
Automated Distributed Computer Management

Presented at the 1986 Fall DECUS Symposium
San Francisco, CA

October, 1986

Larry L. Johnson

Automated Distributed Computer Management Page i

CONTENTS

1 Introduction...1
2 Statement of Problem.................................... 1
3 System Goals...2
4 Development Strategy.................................... 4
5 Data Flow Model of Distributed Computing Services.... 4
6 Generic Software Model -- "Integrated Products"6
7 Completing the Loop of Human Interface 8
8 Software Production Subsystem.......................... 9
9 System Management Subsystem........................... 11
9.1 Configuration Database...............................12
9.2 Software Distribution................................12
9.3 Hardware Distribution................................14
9.4 Personnel Distribution...............................14
9.5 System Configuration Audits......................... 15
10 Node Management Subsystem............................. 15
10.1 Software Installation................................15
10.2 Integrated Product Operation (COREDRIVE) 16
10.3 Time Share Node Management Products................ 18

APPENDIX A INTRODUCTION TO READING DATA FLOW DIAGRAMS

APPENDIX B DATA FLOW DIAGRAMS

Automated Distributed Computer Management Page 1

ABSTRACT

A data flow model of a distributed,
loosely-coupled, time-sharing computer network is
discussed. This model has been used to initiate
an evolving implementation of an automated
software distribution/installation and
configuration management system capable of
handling software distribution and management for
a system involving many machines. The model
defines a generic software product, independent
of its function, in the context of a distributed
computer services shop.

1 Introduction

The following is a discussion of the top-levels of architecture
used in our effort to automate distributed computer services
management. The discussion is from the point of view of a
systems analyst and is consequently centered around the "whats"
rather than the "hows ". Also, architectural aspects are
discussed with no regard to their state of implementation. The
discussion wanders in and out of those things which have been
accomplished and those which may be accomplished someday.

When using the expression "system configuration", we speak in the
context of nodes in a distributed system and their attributes of
software, hardware, and personnel. We are not generally speaking
of classic project system configuration management or control.

2 Statement of Problem

A computer services shop which maintains a large number of
time-sharing computer nodes on behalf of its customers is
presented with problems in efficiently managing the configuration
and day-to-day operation of those nodes. As the number of nodes
and their geographical dispersion increases, the head count and
physical dispersion of the maintaining staff must also increase.
Without automated assistance the maintaining staff becomes
overwhelmed with problems in keeping large amounts of data
organized, in keeping up intra-staff and user communication, in
keeping the system up-to-date, and in keeping management apprised
of the system's state.

Automated Distributed Computer Management Page 2
Statement of Problem

The installation of software on a node amounts to high-tech
clerical work, The process is simple in concept, complex in
detail, and time consuming. The resulting boredom makes the
installation operator error-prone, resulting in error situations
which are often time-consuming in recovery. The installation
chore is characterized by long periods of boredom, punctuated by
moments of sheer panic.

Without automated support, system configuration management is
costly and approaches impracticality as the number of nodes
increases. This presents legal hazards by making it more likely
that software might propagate to a node which does not have a
license. It creates a nightmare for those responsible for
software updates. Additionally, management is constrained to
manage the unknown. It is difficult to assess and control the
efficacy of computer services without knowing the state of the
collective system.

Another problem which arises in a large distributed computing
environment is the creation of unnecessarily diverse
environments, Each node creates its own system structure which
is often poorly documented. System engineers maintaining the
system must re-orient themselves for every system on which they
work. This diversity also impairs the migration capabilities of
user groups. Users require retraining simply because they have
moved their accounts to other machines.

3 System Goals

In order to address the problem an automated distributed computer
management (ADCM) system was proposed with the following major
goals:

q Accommodate system management.

System configuration management was to be part of the
architecture of any software distribution system conceived.

q Automated distribution.

Menu selectable distribution. When the distribution is
entered, it proceeds transparently, shipping the software
over network facilities where available, and coordinating the
generation and traffic of physical distribution media.

q Automated installation.

Automated Distributed Computer Management Page 3
System Goals

Pre-programmed installation will be supplied whenever
feasible, allowing a programmer to "install" it once for all
systems.

q System manager control.

Despite the level of automation achieved for a given product,
system manager approval will be required before it is a
candidate for installation by an operator or by automated
facilities.

q Uniform node architecture.

There will be a core of software common to all machines to
provide a common base of familiarity for operation and use of
any machine in the system.

q Tailorable node architecture.

The core software will offer hooks and extensions by which
node tailoring is made simple. Functionality provided by the
core software will be selectable for special p

urpose
machines. Software will be organized

i n
functional packages

which closely cooperate with other packages, or
alternatively, operate without them using documented hooks to
provide surrogate processing.

q Logical isolation of physical node structure.

The physical system structure will be transparent to normal
operational and applicational use, allowing rearrangement of
physical structure for tuning or architectural enhancement.

q Incremental Release

Due to the size of the undertaking, it was imperative that
the system be incrementally releaseable so that portions of
the system could be used while the rest was developed. The
architecture would be such that previously released portions
would require minimal rework to accommodate new
functionality.

q Broad Applicability

Support was needed for machines applied to extremely diverse
applications, e.g., software development, modeling, CAD/CAM,
signal processing, etc. The system must be layered to allow
matching the supplied software and features to almost any
node's mission. There will be a base kernel which is highly
general and makes no assumption of the use of the machine.
Additional products will be supplied within the system to
assist particular common applications, e.g. time-share
computing services as opposed to dedicated machine control.

Automated Distributed Computer Management Page 4
Development Strategy

4 Development Strategy

It was important that the analysis of the problem proceed by a
broad-scoped top-down analysis of the function of managing a
distributed computer services shop. Yourdon style data flow
diagramming was selected as the primary vehicle of analysis.

The broad-scoped analysis provided a framework in which problem
areas could be identified and prioritized. Detailed analysis
proceeded in critical areas providing a detailed list of
problems. The problems were prioritized in light of their scopes
of effect and estimated cost of solution. Solutions were then
developed in order of the priority of the problems.

It is important to note that an attempt was made to avoid any
pre-disposition as to automating or not automating functions.
The implementation of a solution could involve any combination of
automated and manual procedures. The human element was treated
as part of the system in both contexts of system support and
system use. Manual procedures would be designed to dove-tail
with automated procedures and vice-versa.

Early development concentrated on quick solutions to severe
problem areas. This enabled the installation of a broad base of
"adequate" prototype software to do the job while the "final"
solution was under development. Re-prioritization was made for
the upgrade of these early subsystems. Incremental refinement of
subsystems then proceeded under the same prioritized task
management under which the system had been conceived. The
incremental refinements were possible and manageable due to the
top-down analysis which had been made. A system architecture was
defined by the specification, allowing subsystems to be easily
up-graded with minimal perturbation to other subsystems.

The system was designed to accommodate evolution. No particular
subsystem was to be considered final. It was perceived that our
customers' requirements and upper-management's requirements
changed naturally in the course of normal business. It was
therefore important that the system be designed to evolve to meet
the changing needs. It was imperative that evolution (change) of
the system be considered as normal and not handled as an
alternate development mode.

5 Data Flow Model of Distributed Computing Services

The development framework was a data-flow model of a distributed
computing services shop. The top-levels of the model are
presented in an appendix and are the focal point of the remaining
discussions. It is important to note that the diagrams have been
edited to simplify them for the purposes of illustration. This
has resulted in flow imbalances in several places. A data
dictionary of flows and process descriptions (mini-specs) has not

Automated Distributed Computer Management Page 5
Data Flow Model of Distributed Computing Services

been offered. The names of the flows at this top-level provide
sufficient definition of the items for the purposes of this
discussion. Most of the text of this article is a filtered,
narrative form of the mini-specs.

The entire model involves well over one-hundred mini-specs and
over eight hundred data dictionary entries. The diagram depth
averages around six to seven levels, going as low as twelve.

A brief tutorial on reading data flow diagrams is presented in an
appendix.

The first level of the diagram (under the context diagram)
defines three major subsystems.

1.0 -- Produce Integrated Software

This subsystem is responsible for providing software to the
distribution subsystem in a form it can use. This involves
re-packaging externally acquired software as well as
developing new software.

2.0 -- Manage Distributed System

This subsystem is responsible for the distribution and
coordination of resources among all nodes and the
coordination of those resources. "Resources" includes
software, hardware and human resources. It is this subsystem
which maintains the central database which details the state
of the entire distributed system, managing distributed audits
to keep itself up to date.

3.0 -- Provide Node Services

This subsystem is responsible for providing node services
which may be those of a hardware inventory cage, or those of
a full-service time-share computer node. Although many other
classes of services could be defined, these were the two
which were considered. The hardware inventory cage was
treated exactly as a computing node, except it had no users
and could not compute.

Note that software is the flow which hops across the subsystems.
In order to define the system it was essential to construct a
model of a software product (which has come to be called an
"Integrated Product") which lends itself to application in all
three major subsystems.

Automated Distributed Computer Management Page 6
Generic Software Model -- "Integrated Products"

6 Generic Software Model -- "Integrated Products"

In order to accommodate the requirements of software production,
distribution, and use, a model of generic software was
constructed.

The model defines a product to the system, regardless of its
function. The generic product was partitioned into operational
contexts which were defined against system events. Such
partitioning amounts to a pre-installation or "pre-integration"
of the software. Consequently, software packaged in compliance
with the model came to be known as "Integrated Products", or
„ IP's".

The following is a breakdown of the operation contexts:

0 System Functions -- those functions which have system-wide
effects or availability.

- Startup -- those functions provided at each system boot.

- Shutdown -- functions provided at each system shutdown;
typically the converse operation of the startup function.

- Monitor -- those functions which are provided by the
product to be executed by the system on the products
behalf, and which may have system-wide effects.

- Alarm -- definitions of alarms, alarm recipients, and
alarm conditions. The primary vehicle of the machines
request for human action. Alarm conditions are generally
tripped by sister functionality supplied as a monitor
component.

- Eventlog -- definitions of entries for error logging and
audit trails.

0 Process Functions

- Login -- non-optional functions provided at process
creation.

- Logout -- non-optional functions provided at process
deletion; typically the converse of operations provided
at login.

- Setup -- user initiated functions which establishes the
users access to a product resolving any logical/physical
associations.

Automated Distributed Computer Management Page 7
Generic Software Model -- "Integrated Products"

- Rundown -- the converse of setup functions; generally run
at process deletion before logout components.

0 Product Functions

- Install -- functions beyond the system default required
for the successful installation of a product.

- Remove -- functions which undo the operations done by an
install component prior to the default removal
operations.

- Document -- descriptions of product documentation,
on-line and off-line. Used primarily with a product
documentation catalog utility.

- Test -- procedures to provide minimal exercise of a
product sufficient to be confident of proper installation
of the software. These tests are not the exhaustive test
performed by developers to assure correct operation.

0 User Definition Functions -- Functions which will be called
under a pre-defined protocol on the addition, modification or
removal of a user from the system.

- Add User

- Modify User

- Delete User

Local Data -- repositories of data generated or accumulated
by a product which must survive product update.

Software to operate in these contexts is provided as components
of the product. Typically a component is an image or a command
file, e.g. startup or login functions. Additional conventions
exist for some components such as:

+ Menu selection titles (User Definition)

+ Standard product description information (Document)

+ Execution specifications (Monitor)

Automated Distributed Computer Management Page 8
Generic Software Model -- "Integrated Products"

Each integrated product (IP) is supplied with source and a
prepare stream. The distribution manager can build a new product
release for upwardly compatible operating system revisions
without returning to the developer. This is true for all
software dependent on some other piece of software which has been
marked as an upwardly compatible dependency. Of course this
upward compatibility is an assumption. The prepare stream often
will contain a coarse thread test for the product. Passing this
test, the new release is a candidate for beta distribution.

The option exists to ship images and to use the prepare stream
simply for packaging, a major function of the prepare stream.

The prepare stream packages the product according to context in a
pre-defined way which permits node resident software to locate
the software components of each context. Currently these
components are located through a pre-defined directory structure.
A second packaging technique is under development which will
describe a product using an Integrated Product Description
Language (IPDL), making no assumptions of directory structure
beyond the location of the root where the description is
contained. This second version will facilitate the conversion of
externally acquired software, requiring only that a description
be written, minimizing physical repackaging.

Each IP has associated with it a distribution class, which
operates as a "red-tape filter". The distribution class is
assigned by management, specifying the amount of justification
required for a piece of software from "for the asking" to full
cost-benefit analysis. Obviously the price of the software has a
great deal to do with the class assignment.

Completing the Loop of Human Interface

In the previous discussion on operational context partitioning,
most of the contexts are intuitively recognizable as being
characteristic of a generic software product. However, the alarm
component, and to a lesser extent, the monitor component deserve
additional discussion.

When a person wants a computer to do something, he simply logs in
and makes his request of the computer. However, when software
detects that something requires human intervention there is no
robust way to make a request of a person, and if necessary, nag
him. Alarm components provide the ability to do this.

Alarm components are supplied as descriptions of alarms and their
meaning. Any alarm so defined can be "tripped" by software which
calls routines supplied by the alarm subsystem. When an alarm is
tripped, it becomes an alarm condition which remains in effect
until explicitly dismissed. Part of the alarm description
specifies escalation levels. Each level describes the age or

Automated Distributed Computer Management Page 9
Completing the Loop of Human Interface

multiple trip count for a condition required to escalate it to
the next level.

The operator uses a utility to enter subscriptions of users to
alarms at particular escalation levels. The alarm system issues
reports of outstanding alarm conditions based on the terms of the
subscription.

Therefore, one can arrange to have an operator receive "backup
overdue" messages. If ignored for a pre-set period of time the
alarm may escalate to a secondary operator. A further escalation
may cause the alarm to escalate to the operator manager... and
so forth.

Monitor components are operated by a driver which is much like a
batch job controller. The controller is supplied with more
flexible timing and periodicity options, but it accepts jobs only
in the form of monitor components. Frequently the use of a
monitor component is to periodically run schedule and sanity
checks, issuing alarms for anything that requires human action or
inspection.

Using the combination of monitor and alarm components, all
products have available to them a means by which they can request
action from people, and if necessary escalate the request to
backup people. This capability makes the automation of
coordination of efforts requiring manual operations
straight-forward.

8 Software Production Subsystem

The software production subsystem (1.0,
PRODUCE INTEGRATED_ PRODUCTS) defines the approach toward the
development of the system itself, as well as the development of
integrated products (IP's) and the conversion of external
products to IP format.

The development team is itself operated much like a time-share
system in which:

q the CPU is the development team (PERFORM EFFORT CYCLES).

q the job-controller is the team's management
(MANAGE IP PRODUCTION).

q the ACTIVE EFFORT CYCLES file is the list of inswapped tasks.

Automated Distributed Computer Management Page 10
Software Production Subsystem

q the CANDIDATE CYCLEDEFNS file is the list of outswapped
tasks.

The management of development (1.1, MANAGE IP PRODUCTION), is
responsible for maintaining a list of CANDIDATE EFFORT_ CYCLES
comprised of edited and reviewed DEVELOPMENT REQUEST's
originating from inside or outside the development team.
DEVELOPMENT_PRIORITIES are gathered from upper-management. The
priorities are used to order CANDIDATE_EFFORT_CYCLES, selecting
some for migration to ACTIVE_EFFORT_CYCLES when
AVAILABLE_ RESOURCE_ DATA indicates appropriate resources are
available.

An EFFORT_CYCLE can consist of work defined among the following
categories in any proportion:

q Ramp-up -- Project staff is brought up to date on work
previously done and the requirements which need to be
satisfied on this cycle of effort.

q Analysis -- Consists of deriving data flow diagrams as a
functional specification. Often database requirements, time
limitations, and external interfaces are defined. Focus is
kept on what is to be done as opposed to "how". Rough
resource and delivery estimates are made,

q Design -- Consists of refinement of analysis to the
definition of modules and the actual engineering of the
system and its interfaces. Early design cycles are made to
aid the estimations being made by the analyst.

q Implementation -- A broad category of those things involved
in taking a designed system and creating an incarnation of
it.

	

Includes:
- Coding
- Testing
- Integration

- Packaging

q Wrap-up -- Whether the cycle reaches the end of its
definition, or is terminated prematurely by management, a
minimum period of time is allocated for wrapping-up the
effort. Completed work is inventoried as well as work in
progress. Work which is too young is discarded and remarked
as unstarted. The procedure for reactivating the cycle is
documented. The project is shelved in the
CANDIDATE CYCLE DEFNS to be activated at a future time as
changes in priorities and available resources dictate. When
a cycle is completed naturally, part of the wrap-up effort
includes analysis for the definition of the next suggested
cycle of effort, or modification of that cycle's definition
if it already exists. At the end of each cycle, estimates

Automated Distributed Computer Management Page 11
Software Production Subsystem

are refined. As each cycle completes, a more accurate
picture emerges of the amount of work required to reach a
development milestone.

Generally subsystems or products begin in the definition of a
cycle involving primarily analysis and a little design work for
feasibility testing. This effort generally has a pre-defined
man-power expenditure of two to four man-weeks. Whatever the
result at that time, the cycle is completed and recommendations
made to management. If management is still interested in the
project based on the initial estimates, another cycle is
initiated involving detailed design of critical subsystems. The
goal of this effort is primarily the refinement of initial
estimates. Analysis continues concurrently to attempt to define
partial delivery sub-packages so that portions of the
functionality can precede the entire deliverable, allowing
experience in using a product to help direct the development
effort.

Subsequent cycles are defined and committed to execution until
the priorities change and the project is outswapped, or the
effort reaches fruition.

Management can therefore change the direction of the development
team in a smooth pre-defined fashion. However, care must be
exercised to avoid "thrashing" the development team into rapid
wrap-up/ramp-up sequences.

This technique is referred to as an "Evolutionary Life Cycle"
approach (ELC). It is derived from a wide number of references
on project management (too numerous to cite), and from the
development staff's collective experience. It produces a little
anxiety in an implementation team the first few times a cycle is
wrapped-up before completion. However, confidence is restored
the first time one of those cycles is re-activated and completed.

The ELC approach also affords the opportunity to weed out pet
projects which "seemed like a good idea at the time". By
committing resources incrementally and seeking refined estimates
as the primary product of early cycles, one detects projects
which are bigger than they had seemed very early. One can then
determine that the results are still worth the cost and continue,
or that they are not and shelve (or kill) the project. In either
case, management is apprised of any changes in the perceived size
of an effort before it is "too late".

9 System Management Subsystem

Automated Distributed Computer Management Page 12
System Management Subsystem

9.1 Configuration Database

At the heart of the configuration management subsystem (2.0
MANAGE DISTRIBUTED SYSTEM) is the SYSTEM CONFIG database.

The subsystem (2.1, MANAGE _ RESOURCE_ POOL) maintains entries for
software, hardware, node, and personnel resources. New resources
are acquired and old resources disposed in keeping with
SYSTEM REQUIREMENTS.

Software resources are presumed to be in integrated product (IP)
form. Hardware resources are tracked from submittal to the
corporate purchasing department, through shipping, at receiving
docks, destination node and through check-out. In this context,
vendors and docks are treated as temporary "hardware bins", and
therefore as nodes in their own right.

Software licenses are carried as resources in the pool, and are
mapped to nodes in the same fashion as software.

The resources of personnel are mapped to nodes and tasks based on
a percentage man-power basis. A minimum time for any task is
provided to avoid fragmentation of assignments.

NODE_CONFIG ENTRY ' s are managed in (2.2, MANAGE_SYSTEM SYSTEM_CONFIG).
This system records and tracks movement of resources among nodes.
RESOURCE_ UTILIZATION_ REPORTS are used to move under-used
resources to systems which require them. This subsystem maps
software, hardware, personnel, licenses, etc. to specific nodes.

For maximum flexibility and speed of implementation, a relational
database was selected for the implementation of the central
system configuration database. DEC's RDB product was used. The
database was organized under principles of entity formalism
suggested in the outline of Codd's RM/T model as presented in
C. J. Date's book, "An Introduction to Database Systems, Volume
II", Addison-Wesley, 1983.

9.2 Software Distribution

The subsystem (2.2 MANAGE SYSTEM_CONFIG) receives integrated
product releases from (2.1 MANAGE_RESOURCE_POOL). There is some
controversy over having an apparent software production function
under a resource management subsystem whose primary
responsibility is to record the entrance or exit of a resource
from the system. However, placement of the function here enables
regeneration of software for new revisions of the operating
system without the overhead of going back to the development
organization. This provision is made for software which is
expected to require only recompilation or relinking for upward
compatibility.

Automated Distributed Computer Management Page 13
System Management Subsystem

A configuration operator enters the intended distribution via a
menu interface. The distribution is entered in the configuration
database as the first act of distribution, meeting the design
goal of architecturally embedded configuration management. The
intended distribution is checked for compatibility against
products existing at the node and other products targeted for the
node. If other products are required for proper operation the
configuration operator is presented with the option to include
them in the distribution. If the distribution would cause an
incompatible profile of products the distribution is flagged
incompatible until a subsequent edit of the distribution brings
it into compatibility compliance.

In addition to inter-software dependencies, hardware dependencies
are similarly checked.

Software licensing for the node is checked. If no licensing is
required for the software being distributed, it is marked as a
candidate for distribution immediately. Otherwise it placed in a
licensing wait mode, awaiting confirmation of license receipt.
At confirmation the software is then marked as distributable.
(Actually, distributability is indicated by a number of state
flags in the database involving compatibility checks, licensing
checks, managerial approval, configuration control board
approval, etc.)

A licensing mode has been provided for those vendors with whom a
great deal of business is done. The software is marked as
distributable, and a confirmation to the licensing vendor is
automatically entered and sent periodically. On receipt the
vendor adds the license to its database, effective the date of
distribution, and bills the company. This minimizes
administrative delays in the distribution of commonly required
software.

Assuming that all the state flags of the software-to-node
configuration entry indicate deliverability, the Automated
Distribution System (ADS) takes over.

Distributions which are approved and have network lines available
will transmit the distribution electronically. The transmission
can take place at a pre-determined time or at a time when the ADS
detects low processor/network demand (of course this later mode
requires a deadline to avoid the transmission dying on a busy
node). An automated acknowledgment system implemented in the
receiving half of the ADS confirms receipt.

Those distributions for which there is no network accessibility
are queued. When a distribution operator lets the system know
that he is ready to make distribution media, the ADS notifies the
operator to mount the appropriate media, generates labels and
attendant manuals, and dequeues and transfers the software
distribution to the media. Compatibility checks pre-determine
the bundling of software going to the same node to ensure that

Automated Distributed Computer Management Page 14
System Management Subsystem

inter-dependent software products are shipped together.

Regardless of the mode of transmission (network or physical
media), the system maintains confirmation flags for reception of
distribution, acceptance/rejection of distribution, and
installation of distribution. Those nodes which have network
support report these confirmations automatically. The
confirmation for the "footnet" physical media are entered
manually by the configuration operator.

9.3 Hardware Distribution

At the time request for purchase is sent to the corporate
purchasing department, the ordered hardware is entered as a
resource mapped to a vendor node. Expectation dates are kept, as
well as the node of first receipt inside the company. This
enables aged lists of overdue hardware to be compiled for
follow-up .

Status flags are maintained to track the shipment of the order.
The hardware is then mapped to its intended node of use under a
unique configuration number. Using a unique configuration number
for each node/item/duration mapping enables an audit history to
be maintained on the travel of a particular hardware item.

Most of the actual purchasing tracing is done by the corporate
purchasing department operating its own inventory system. The
SYSTEM CONFIG database tracks only milestones and overall status
to detect bottlenecks and to provide status information in
resource summary reports covering the entire system.

9.4 Personnel Distribution

Personnel records are kept to define the role of an individual in
the distributed system. Personnel are divided into support and
user categories. Within support, personnel are recorded with a
capabilities matrix indicating their ability to serve as
operators, product consultants, system managers, system
engineers, etc.

Personnel are assigned to nodes and functions by percent of time.
These assignments are under control of their supervisors and
coordinated by the database. The database performs periodic
integrity scans to detect lapses in coverage due to vacations,
illness, or termination; over-booking of an individuals time;
responsibilities which have no person currently assigned to them;
etc.

Automated Distributed Computer Management Page 15
System Management Subsystem

Central records are also kept of the existence of a user account
on any node. On termination or reassignment of the employee, his
accounts can be marked for reassignment or deletion, and
immediately disabled for access. This is an important security
consideration in a large, dispersed system in which an employee
can have a half dozen accounts on machines separated by hundreds
of miles.

9.5 System Configuration Audits

The configuration audit subsystem (2.3 AUDIT_SYSTEM CONFIG)
coordinates audit schedules, receives manual and automated node
audit reports and compares the audit against the appropriate
SYSTEM CONFIG ENTRY.

The audit system is used as a state detector. When there is
disagreement between the audit and the configuration entry, the
configuration entry is marked with the audit identification and a
variance flag. The system compiles reports of the conflicts
which are resolved by an audit operator. The operator must
determine if the audit or the configuration entry is in error,
and make a traceable correction to the configuration entry
through audit support software.

The audit system also generates late notices for audit reports
which have not been received on schedule.

10 Node Management Subsystem

10.1 Software Installation

The installation of software begins with the reception of the
software by the node portion of the Automated Distribution System
(ADS). The system operates as a network task for electronic
distribution and interactively for reception of physical media.

The ADS places the distribution in a receiving area, and updates
the node's database to reflect receipt of the distribution and a
table of its contents. Each distribution entry in the node
database has a system manager approval flag. The distribution is
not installable until that has been set.

The system manager runs privileged software to review
distributions and to accept or reject them. The primary purpose
of this pause is to keep the system manager apprised of the
configuration of his machine, and to provide a last chance to
catch software sent to the wrong node. Normally the system
manager approves the distribution for installation and sets a
time for installation or a deadline by which the installation is
to be done. The installation can be auto-scheduled and/or

Automated Distributed Computer Management Page 16
Node Management Subsystem

auto-initiated if elected by the system manager. Should the
system manager reject the distribution, he enters his reason
during the transaction. The reason for rejection is sent back to
central distribution electronically or by inter-office mail,
depending on the node's available resources.

An installation subsystem is invoked interactively by the
operator, or automatically under a schedule selected by the
system manager or operator. Only software which has been marked
in the database as approved for installation is candidate for the
installation subsystem.

The installation subsystem unpacks the distribution kit, placing
the product in a product/revision root under an integrated
product root (directory structure). Software which has been
originally packaged as an integrated product commonly requires no
further action.

Those products which require installation activity beyond the
default supply an Install Component (image or command procedure)
which is activated after the default installation operations.

Interdependent integrated products are packaged in kits. All
products in a kit are installed during the same install operation
and in a prescribed order determined when the kit is generated.
If the installation of any product in a kit fails, the entire kit
is forced to fail so that a partial installation does not result.

After installation, the Test Component is operated to ensure that
the product is properly installed. If the test succeeds then the
product is marked in the database as available. Otherwise the
installation operator receives an error message and the product
remains marked as unavailable.

10.2 Integrated Product Operation (COREDRIVE)

Each node within the system has two base products:

1. ADSNODE -- The receiving half of the Automated Distribution
System

2. COREDRIVE -- Coordinates integrated product operation.

The COREDRIVE product understands the IP organization. From the
description of the products' components, scripts are compiled for
each class of function, e.g., startup, login, etc. Each IP
component is inserted into its appropriate script at
installation.

Automated Distributed Computer Management Page 17
Node Management Subsystem

Each system event (as described in the discussion on operational
context partitioning of products) has associated with it a
functional driver(s). Drivers are triggered by the operating
system, the operator or the user as appropriate for the
component. For example, the startup driver is triggered by the
boot of the operating system, the login driver is triggered by
the creation of a process, and the setup driver is invoked by the
user.

COREDRIVE activates each component according to the script
automatically.

Many of the drivers are utilities which provide a standard
interface to the components.

q IP Receiver (OPER, SYSMGR) -- Used to pick up the IP after it
has been placed in the receiving root by the ADS. A portion
of functionality restricted to the system manager deals with
installation approval.

q INSTALL (OPER) -- Installs kits of products previously
approved by the system manager. The operator selects the
kits to be installed and optionally determines schedules for
auto-installation. The operation of this utility has been
discussed at length in a previous section.

q User Definition (OPER) -- Menu driven utility to define
users. User definition components are mapped at run time and
supply menu selection line titles for use in optional
activation.

q IP Control (OPER) -- Allows the operator to turn on/off
specific product availability, component operation, and other
properties common to all products.

q External Product (OPER) -- Currently implemented as an
external component utility. This enables a local node to
describe locally generated or acquired code to COREDRIVE for
execution.

q Document Catalog (USER) -- A utility to describe the
documentation as presented in documentation components.
Documentation on and off-line is described. Facilities are
provided to copy on-line documentation to printer or user
directory, and to order documentation which is off-line.

q Software Catalog (USER) -- Describes the software currently
on the system. Documentation components supply product name,
short description, abstract description, etc. The level of
description desired is specified by the requester.

Automated'Distributed Computer Management Page 18
Node Management Subsystem

q Hardware Catalog (USER) -- Describes the hardware
configuration of the node.

q Product Setup (USER) -- Establishes a logical link between
the user and the physical location of the product. It is
this utility which provides the isolation of physical product
structure. This utility runs the setup component for the
named products.

10.3 Time Share Node Management Products

The context partitioning of products, automated distribution,
reception and installation are all more general than the context
of a time share computer service node.

The data-flow model specifically models a time-share node
operation. The products which emerge from the model have been
called Ancillary Core Products (ACP's, not to be confused with
ancillary control processes).

Most of the ACP's are strictly applicable to time-share nodes
whereas others are much more general. These products are
considered advised to our nodes, but are optional. When an ACP
requires cooperation from another which is not available on the
node, the node's technical staff must see to it that surrogate
functionality is provided.

The following is a list of some of the ACP's:

q HRDWRMGR -- Loads device drivers, maintains hardware
database, provides hardware status callbacks for use by other
ACP's which need to check the availability of hardware.

q VOLMGR -- Coordinates disk mounts, disk archive, tape
archive, backup, and volume integrity.

q USERCOMM -- Coordinates communications with users. Provides
login banners, news utility, broadcast utilities, etc.

q USERSCRN -- Screen users against system mode. Uses authorize
and extended UAF facilities.

q VASP -- Accounting utility, Resource usage by account.

q PRINTQMGR -- Menu driven print queue handling. Automated
modes of operation for common functions. Call backs for
products requiring queue management services.

Automated Distributed Computer Management Page 19
Node Management Subsystem

0 BATCHQMGR -- Similar to PRINTQMGR

0 PMIS -- Performance monitoring, load monitoring.

Where applicable the above products maintain communication with
counter-part functionality on the central node to maintain the
central database and provide auto-auditing capabilities. Where
networking is not available, the software contacts system
operators via the alarm subsystem to see to it that required
manual operations are performed.

APPENDIX A

INTRODUCTION TO READING DATA FLOW DIAGRAMS

Data flow diagrams are used to describe the functions of a system in
terms of processes and data flow. Flow diagrams are essentially
inventories of functionality without regard to sequencing and similar
design related issues. All functions are asynchronous from the point
of view of a diagram. A function is "triggered" by the presence of
data on which to operate. This orientation is not necessarily carried
forward into design, unless it is natural to do so.

Circles represent processing and are labeled with the name of the
process. The name is selected to give an extremely brief description
of the process.

Processes are connected by labeled arrows or vectors which represent
data flow. Data flows are aggregates of data named to suggest their
content. The contents are generally detailed in a data dictionary;
however, in this article no data dictionary has been supplied since we
are not addressing details.

Data stores are indicated by labeled straight lines which have
ingressing/egressing data flows from one or more processes. The word
"stores" is used in lieu of the frequently used term, "files". This
is to emphasize that data stores represent storage which could be
temporary or permanent, resident in memory, on disk, or on a piece of
paper in a file cabinet. The only requirement on a data store is that
it be in existence long enough for cooperating processes to use them
meaningfully.

Data flow diagrams are "leveled". To describe the functionality of a
process, one goes to a decomposition of that process which is another
data-flow diagram. Data flows ingressing and egressing the "edge" of
the paper represent flows in and out of the parent process.

When a processes function can be explained in a page of text, it is
not further decomposed as a diagram, but textually described in what
is called a "mini-spec", or "primitive process". Mini-specs have not
been supplied here because only the top-levels are being examined and
the mini-specs occur considerably lower in the leveled diagram.

INTRODUCTION TO READING DATA FLOW DIAGRAMS Page A-2

Data flow diagrams are not generally read from start to finish. One
generally examines the top-levels to get a feel for the overall
architecture of the system. When an area of particular interest is
encountered, one often pursues the reading down through mini-spec
descriptions. Alternately, some peruse the mini-specs and then supply
themselves with the context from the diagrams afterward. Data flow
diagrams are more comfortably read in "random access" than in "serial
access".

Clearly the diagrams presented in this paper are not intended to
convey the full specification, but to give some flavor of our approach
and its results. Edited diagrams have been included for illustrative
purposes only.

APPENDIX B

DATA FLOW DIAGRAMS

3 .UrO/V1 A-rE D ttSTRt BUT-ED
COMPUTER„ SER.')C-E5

COAlr"EX i 1t IA6RIlF

MANAGEMENT I (.J Sp-R~I

SYST. EIV\

REQut'R EMEN .S
S 5TZN\
RE-PoRT:5

SYSTEM
USR&E

0.0
PROV(DE

L7' s-n'c a C~3 U QED
cowl PUTS .

'5.EkV ICE

ACOOLI-e D
RE-Sou ece

VENDOQ
1N1- 4erfo.)

IVE!)D0i5

0.0 RO'1DE_DISTIZ113orED_C;owt hpUrEk..._SERstfiC£

~oF Tt4A R E-

(ZEQt~tPc'.Ftrvti ENrs

S`?STEM
2E?RTS

Yvl AM AC-1 E

1D, 1St U7D

51
)
5 M

~EG4 tJ o R E-MEA3T
-
5

SYSTE ln

No DE

E PvRi3

NODE

U$ACtE

. D ODUCEd lA/ TECzt2Jmad`
~.®. P O1DUCl5

VaE2r I4CI"PV6_FFail r
CYCLE;

gVMIL Al? L E
faee5ooacE

Dtq-nl

CAJtolbArE C YCLE T EF)s

D E VE LU?,v\ JT

CMD DATE
EFF6ter

CYeLEs

DEV
F
_LUP,ii&ji

-Read ES
REsou2 E

US C-L P 477k

!AiTS6 Ai T P
Pia) bu CT-
I? E4SE

a

I.2. " FPG ,VOkM_ EFGOR.i C~GcEs

us 136,E .D

CXTE R N 14 Lo)

ACQOi R. ED

PRoDUCT5

/AJCARMAT/a A)

I A6CARRA/477 a43

M ~ ~ 2 t47Z '
sPEe~ F/C4rroA)

BASEL/AlE 77
es76 lU 1

~Vl 8 / 4TE

DE516Q

13 AseU/jE_ro
/ /vtPC647Fsu74

Auoir
s-nc Ai PS ,AUDIT

£rMW PS

4SEL./Ai JPJI1r4L
DGSICax,9 I AJC't2NATt M)

I 77.:%'-
-
/m 5 / RELEASE

571tA Ps

A5EL I ArEJ>

/ A) C/a2 /t11R3?o4 lkILA RAIA't7a►J

04
Aubar

I~ VG1oP$lt

~n17~C rZA~~

Pko 0 de--r eel._rose

O 0.7

RELEASE

~r2o Dc.T-

.a /VIAAr E iDaS r3UT-ED SYS17YS-7"f

RE9o(-r5

1 ~1 rg Ak I TE7 V E-~t D"-
PRo®ucl° r 1

-
1c/Ic71014

0.1 0.2 No®r
MAN/4 E /Arrr_c fr 'ED ti1ANA6,E REQu1REMEA)v5

RE30uRCE PRODUCT' S`j5r►~ril
ioooL RELEASE*: Coat F1 Cz

sit srr n/t
REQU)REMENr3

SYSTEM_ CoNF1G

O , L{

Ni4NV~ 6E
1c ESotJi C,E

U5~dc-rF

1 Nrr~l2,~rED
PRoDo r'

D 151-'R1 6 r,orf

RESoLRIE
POOL

NODE
Coal F
IENt7e'

R ESaU2CE

uL..124T7oa)
RE D OR1

NODE-:

Y UDrr

ANDS
RESCu2c-E

REf'o R-7-s

3.0 Ro V 1 D E _ ODE SERVICES

LOCAL
NODE-.CL iFtC.

ENT 2`f

I A(TE&RArED
?Rob ()cT`
D 61

-
2. 113 orloAJ

NODE
EOU re.Ct=
USAGE

'? FPo 32Ts

NUDE_ CoNr 1 ,URATr3 ?

.
J

1
LOCAL

H4RD-COA) F 1&

CAlT

-
k.

u
it.

C OCAL
1,/6LUM Cat/ F16.

E~! nay'

NODE

1 M1e R BEd 06 I te11Er JoDE

~AR2TS DATA

E (el-iA)u6 E VoLuME

I
E

ANODE ® DA A_ VOLUME

3. I MA 4C E~A1a'DE _ 56 rL,Lw4 E

L v C.L.
so FT_ cox/Fr&

ENTky'

O.2.

PER FvkM
CORE

SERVICES

Iv

LOCAL

D 15T-12 (172 old
E,OTR,Y

V
REce v ~ rycz,.ioor

(DELEre

St)PERCEDED
1P- L. DeAL . DATA;

It' Ca n1 Pa A17°
sPcG

I NSTALL/ T6A.L.1_06S

(DELETE)

NE 14. 1 1:1 STRUCTURE;

ZP LOcAL_DATA_ ®VERLAt'

PRoDucr
USE

usEk

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31

